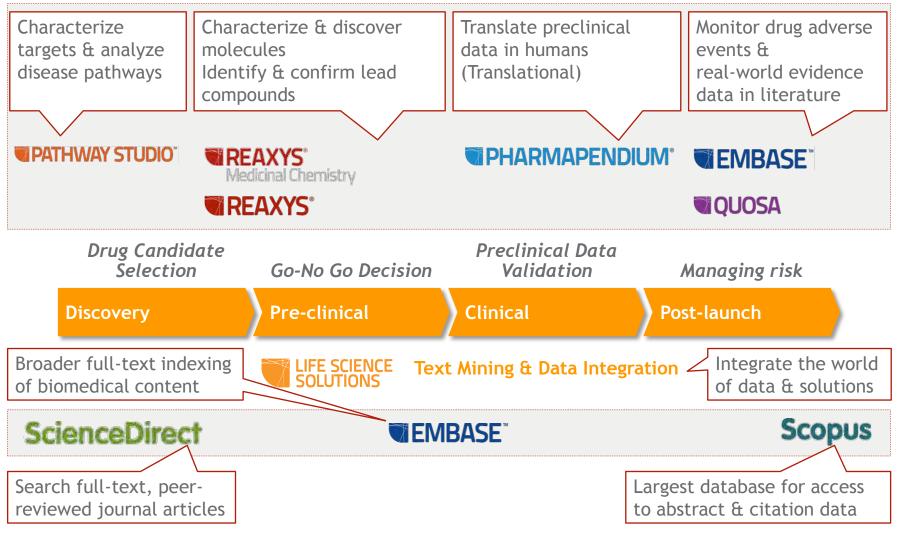
PIOTR GOLKIEWICZ

LIFE SCIENCES SOLUTIONS CONSULTANT CENTRAL-EASTERN EUROPE



SCOUSE INTRODUCING REAXYS

C

SERVING THE LIFE SCIENCES SPACE

ADDRESSING KEY CHALLENGES ACROSS THE R&D VALUE CHAIN

WHAT'S IN A TYPICAL CHEMISTRY DOCUMENT (PUBLICATION OR PATENT)?

1. Introduction

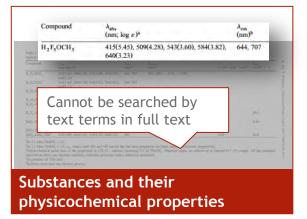
Covalently linked porphyrin dimers have furinded important models to elucidate mechanisms of excitation energy transfer and photomthexed electron transfer in antural photosynthexe processes [1–8]. In addition, some of these models are potentially important mistratis for use in molecular-scale electronic devices [9–11]. Recently, a molecular optoelectronic devices [9–11]. Recently, a molecular optoelectronic have been exploribed in the design of molecular devices. (J) singlet-singlet energy transfer and (in) photoinduced electron transfer. We made use of the differential basicity of the inner immo nurogens of the meso-theroaryloopthyrin and meso-tetraphenyl-

neutral popyrum leads to an emission of a photo from diprotonated popyhysin with very high eff ciency (>95%). The occurrence of such process can be easily tuned by the acidity of the medium fundamentals of which could be used the in constrution of artificial photonic devices. The substitution of pentafluoroaryl groups in in meso positions of the porthyrin confers unique here

meso positions of the perphyrin confers unique inert ness of the imare mino introgent towards protons tion and metallation reactions. The fluoroxylpop phyrins exhibit interesting optical and electrochemic (Gg. 1) comprising of meso-fluoroxylpophyrin dimer (Gg. 1) comprising of meso-fluoroxylpophyrin meso-teraphenylpophyrin with an ethylenedloxid covalent hidge to accomplish selective protonalous and demetallation of the meso-teraphenylpophyrin molecular single excitation energy transfer def floo discussion pophyrin dimer. We demonstrate here that the discussion pophyrin dimer exhibits efficient intra molecular single excitation energy transfer def floor

Chemical structure

$\label{eq:characteristic} \begin{array}{c} \hline \begin{tabular}{c} Chemical reactions \\ \hline \begin{tabular}{c} z_{nF_{5}:ZnH_{5}} & \hline \\ \hline \\ H^{+} & \hline \\ Cannot be searched by \\ text terms in full text \\ \hline \\ ZnF_{5}:H_{4}^{+2}H_{5} DM & \stackrel{H^{+}}{\longrightarrow} & H_{4}^{+2}F_{5}:H_{4}^{+2}H_{5} DM & \stackrel{DN}{\longrightarrow} & \stackrel{DN < 0.1}{H^{+}} & H_{2}F_{5}:H_{4}^{+2}H_{5} DM \\ \hline \\ \hline \\ n_{V} & & & & & & & & & & & \\ \hline \\ z_{n}F_{5}:H_{4}^{+2}H_{5} DM & \stackrel{del}{\longleftarrow} & z_{n}F_{5}:H_{4}^{+2}H_{5}^{*} DM & H_{2}F_{5}:H_{4}^{+2}H_{5}^{*} DM & \stackrel{del}{\longleftarrow} & H_{2}F_{5}^{*}:H_{4}^{+2}H_{5} DM \\ \hline \\ Fig. 2. Schematic representation of different processes of dimer porphyrms. \end{array}$

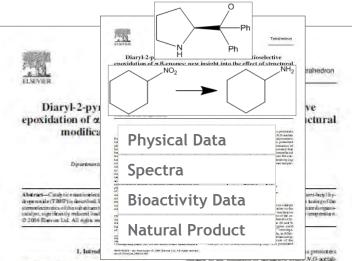


Chemical spectra

2. Experimental

Covalently linked porphyrin dimer was synthesised by the method of Little [14]. We have used 5-(4-methoxyphenyl)-10,15,20-triphenylporphyrin ($H_2H_3OCH_3$) and 5-(4-methoxyphenyl)-10,15,20-tri(pentafluoro)phenylporphyrin ($H_2F_5OCH_3$) as reference compounds for comparison studies. Hereafter these to can be searched in full text, but you don't want to read the whole paper in you are interested only phyrin by this section!

Experimental procedures



Chemistry as the organizing principle

REAXYS IS BUILT

With experimental data from journal articles and patents

Schane L

Is exploring

activity, inv

pheryl moi

and more i action effe

instalidia."

and ee dap tion using e in degrees

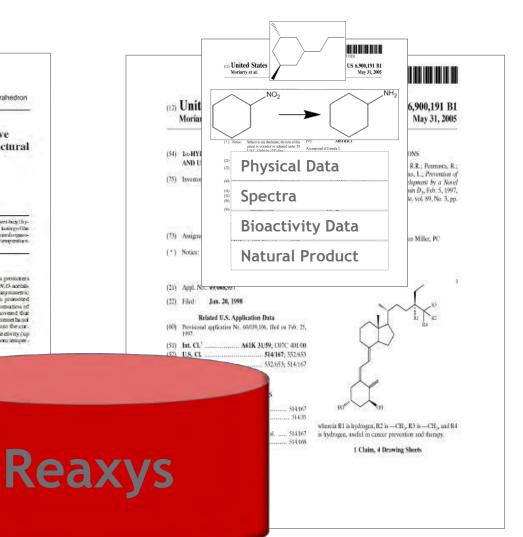
suggesting

catalist /

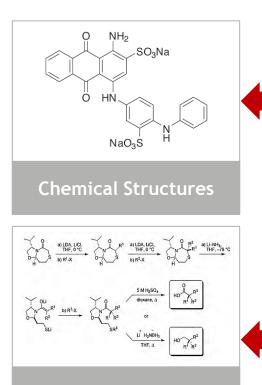
bading an

Enantiomerically enriched a fi-epoty ketones are sensatile intermediates in organic synthesis and important synthetic phamaceuticals.¹ Efficient asymmetric epoxidation reactions of 12.8-meaninged ketones, mainly choleones, have been reported using chinal menal alkyl hydrogenoxide sys-team² Moreover, polyaminencids³ and canchoria alkaloids⁴ have been used in the presence of hytrogen percoide as an oxygen source under basic conditions. The development of simple, or alytic and environmentally being methodologies to access optically plue compounds is a fundamental goal of current organic synthesis. Asymmetric organicatelysis' salities most of these equirements; low cost and easily accessible chimi organic molecules are able to catalyze at ever-increasing number of reactions under operational simiplicity and mild could tors. In order to achieve good yields of products and satisfactory level of emotioselectivity, in most of the reactions, e.g., those promoted by proline-based compounds, 20-30 mol % of catalyst loading is generally employed. Thus, one of the most challenging goals in orga notatalysis is to reduce catal we leading to the level used in metal-catalyzed asymmetric synthesis (<10 mol %).

Chin1 diaryl-2-pystolidinenethanol ethen have been successfully employed as organocatalysts in different transformations such as C-C bond forming reactions,⁶ functionalizations of earboard compounds? and epoxidation of 2,6-instationed aldehydes.⁹ On the other hand, the


Keywood: Thomdador: a.S-Endner: Asymmetric organozatalysiz: 2por

ides. * Conveponding author: Tel.; +39 (899 969565; e-mail: latiness binspace


0000-4020/2 - see front mater © 2006 (Dervier Ltd. All rights meaned do: 10.1016/j.06.2.006.00.002)

with carbonyl compounds.⁶ Very recently, the asymmetric vinylogous Michael addition reaction has been promoted by dia tyl-2 pystolidine methanols through the formation of initian intermediates.¹⁰ We have recently discovered that commercially available (§)-diphenyl-2-pyriolidinemethand 2a and TBHP oxidize unsuttanted a 3-ketones into the curresponding epoxides in good yield and enantionelectivity (up to 30% et] ind ag 20 mol % catalyst loading atroam temper-anile (Sole me 1).¹¹

CHEMISTRY AS THE ORGANIZING PRINCIPLE

Chemical Syntheses

J. Med. Chem. 2009, 52 3784-3793

High-Affinity, Non-Nucleotide-Derived Competitive Antagonists of Platelet P2Y12 Receptors

Younis Baqi,[†] Kerstin Atzler,[†] Meryem Köse,[†] Markus Glänzel,^{5,‡} and Christa E. Müller*

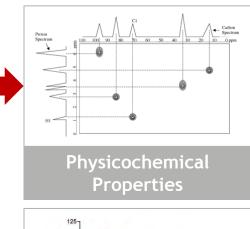
PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany, Department of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Albertstraße 25, D-79104 Freiburg, Germany

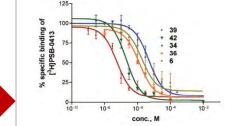
Received March 16, 2009

3784

Anthraquinone derivatives related to the moderately potent, nonselective P2Y12 receptor antagonist reactive blue 2 (6) have been synthesized and optimized with respect to P2Y12 receptor affinity. A radioligand binding assay utilizing human blood platelet membranes and the P2Y12 receptor-selective antagonist radioligand [²H]2-propylthioadenosine-5'-adenylic acid (1,1-dichloro-1-phosphonomethyl-1-phosphonyl) anhydride ([³H]PSB-0413) was applied for compound testing. 1-Amino-2-sulfoanthraquinone derivatives bearing a (pphenylamino)anilino substitution in the 4-position and an additional acidic function in the meta-position of the aniline ring showed high P2Y12 receptor affinity. These new anthraquinone derivatives became accessible by a recently developed copper(0)-catalyzed Ullmann coupling reaction of 1-amino-4-bromoanthraquinone

Reaxys excerpts all relevant data even from footnotes and text

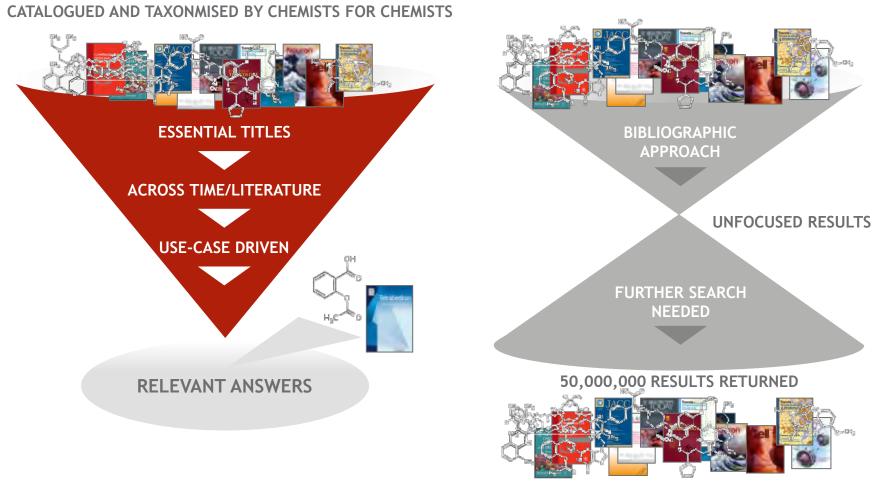

and sustained aggregation not preceded by shape change. The latter receptor also plays an important role in the potentiation of platelet secretion induced by several agonists, and its congenital deficiency has been shown to result in a lifelong bleeding disorder.4 Modulation of P2 receptors in platelets appears to be of paramount importance in regulating platelet function and, as a consequence, in controlling thrombotic diseases, which are the most common cause of morbidity and


* To whom correspondence should be addressed. Phone: +49-228-73-2301. Fax: +49-228-73-2567. E-mail: christa.mueller@uni-bonn.de. 2001. Fast: +39-2.24: /s.2001. E-hauf: christanmetter@unu=botna.et. "PharmaControl Bona, Pharmaconcial Institute, Pharmacontical Chem-istry I, Pharmacontolal Sciences Bona (PSB), University of Bona. "Department of Experimental and Clinical Pharmacology and Toxicol-ogy, University of Fesharg. "Process address: Elsevier Pharma Biotech Group, Elsevier Information Systems GimbH, Theodor-Henss-Allee 108, D-60486 Frankfast (Main), Germany.

10.1021/jm9003297 CCC: \$40.75 © 2009 American Chemical Society Published on Web 05/22/2009

presumably act as covalent, possibly allosteric antagonists at P2Y12 receptors9 (see Supporting Information, Scheme 1). Major drawbacks of clopidogrel and related thienotetrahydropyridine derivatives are: (i) slow onset of action (up to several days) due to the required metabolism, (ii) long duration of action due to irreversible inhibition, (iii) "drug resistance" in a high percentage of patients (up to 30%), (iv) moderate potency (therefore high doses are required), and (v) difficulties in steering and controlling the effects.

Therefore, it is highly desirable to develop P2Y12 antagonists that are lacking the drawbacks associated with the standard P2Y12 antagonists such as clopidogrel and other thienotetrahydropyridine derivatives. Several groups have recently been developing competitive, reversible P2Y12 antagonists that may be superior to clopidogrel and related drugs. Most approaches started from the adenine nucleotides as lead structures, ADP,


Pharmacology

STRUCTURED TO HELP YOU SEARCH

OTHER DATABASES

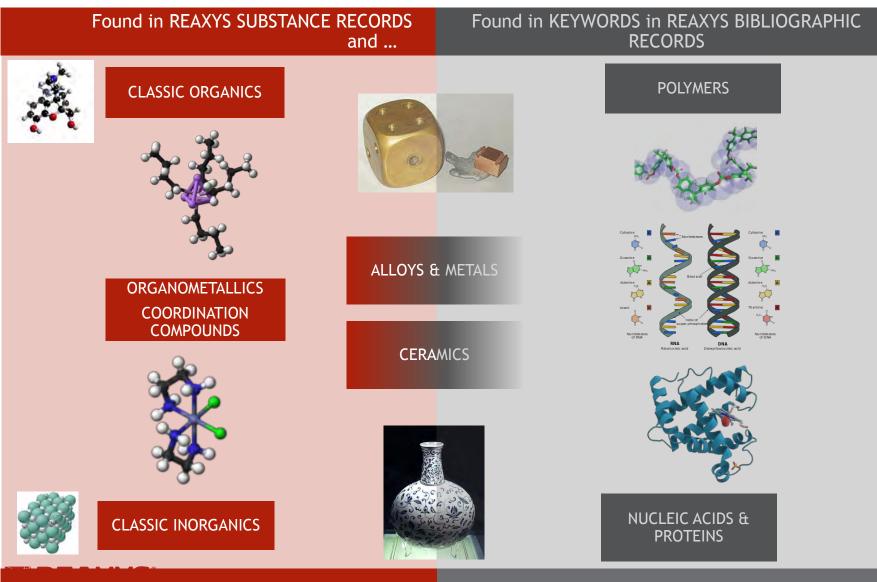
REAXYS

Patent Content: English language only patents from the major chemistry patent classes of the US, European, and World Patent Offices

We are adding Asian patents - ecpected completion 2016

Over 500 million facts Over 400+ searchable data fields HIGH QUALITY experimental results

KEYWORDS


A single bibliographic record in Reaxys contains index keywords from: Authors, Compendex, Embase,

Geobase, Medline and Reaxys.

Our competition has keywords only from two sources: CAplus and Medline

Searching for classes of substances in Reaxys

Search Substances Context

Search Literature Context

WHAT IS REAXYS 2015?

CONTENT: MANY DATABASES ALL IN ONE

A Bibliographic Database

>48 million records

(from ~16,000 journal titles plus records from key patent organisations)

A Substance Database

> 78 million substances (total)

~ 57 million substances (unique)

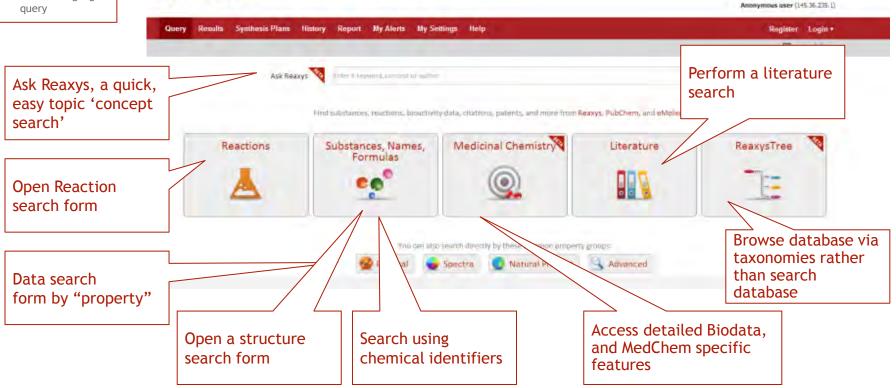
Reaxys 2015

A Chemical Reaction Database

> 38 million single- and multi-step reactions

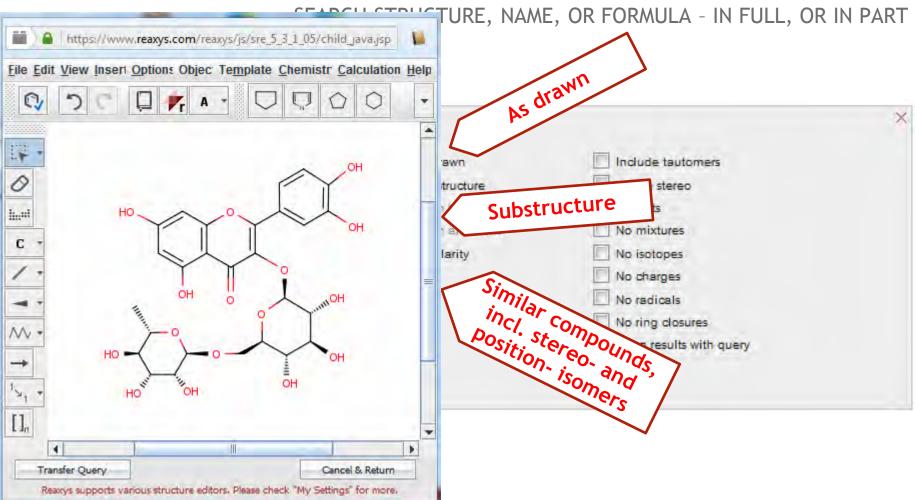
A Property Database

 > 500 million experimental properties in > 400 fields in > 130 subject areas



SEARCH

- What are the search options?
- Substances
- Reactions
- Literature
- Properties
- Is there "search intelligence"?
- Truncation
- Proximity
- Algorithmic interpretation of natural language query



REAXYS

SEARCH SUBSTANCES

SEARCH SUBSTANCES

Search Substances

SEARCH STRUCTURE, NAME, OR FORMULA - IN FULL, OR IN PART

Molecular Formula				
	Molecular Formula		Lookup X Formu	la Builder
dentification				
	Reaxys Registry Number	=		Lookup X
	CAS Registry Number	is 💌		Lookup X
	Chemical Name	is 💌	naproxene	Lookup X
	Molecular Formula	is 💌	naproxene naproxene ((+)-6-methoxy-α-methyl-2-naphthalen	Lookup X
	Number of Components	=	naproxene [inn-french]	Lookup ×
	Molecular Weight	> 💌	naproxene chloride naproxenglucuronide	Lookup X
	LogP	=	naproxenmethylester	Lookup X
Show AND Buttons			naproxeno	
			naproxeno [inn-spanish]	
Physical Data			naproxenoyl isothiocyanate naproxensodium =	
	Melting Point (°C)	< 🗸	naproxensodium =	Lookup X
	Boiling Point (°C)	=	naproxenum [inn-latin]	Lookup X
	Density	exists	naproxi 250 naproxol	×
	Colour & Other Properties	is 💌	naproxren-hydroxyprolinol napryn	Lookup X
Show AND Buttons			naps	
Spectra			naps-2-(d)-chg-gly-arg 3-chloro-4-hydroxyanilide naps-2-gly-pro-arg 3-chloro-4-hydroxyanilide	
	Mass Spectrometry	exists	nansul-ile-trn-cho	×
	Description (Mass Spectrom	is 💌		Lookup X
Show AND Buttons				

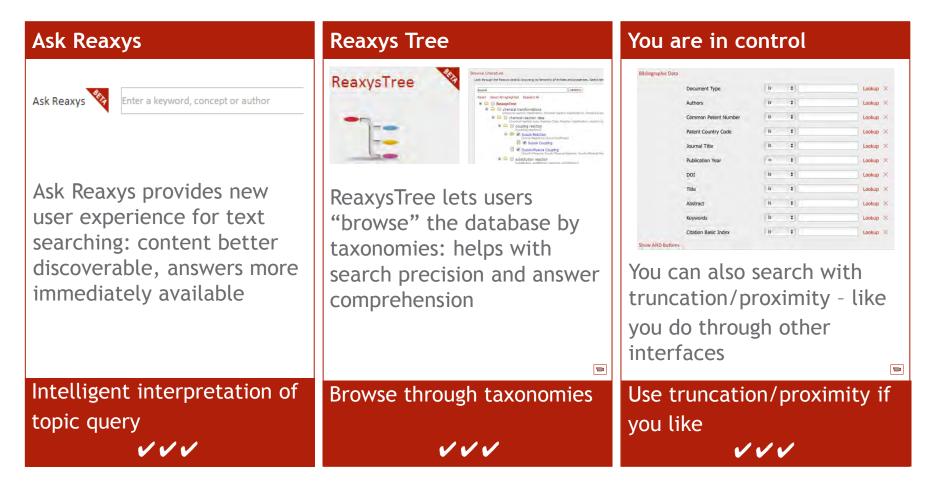
ADD OR REMOVE SEARCH FIELDS

efine the "Substances" query layout				
any property solubility				
- Reaxys		Reaxys Registry Number	(in Reaxys)	
Physical Data		CAS Registry Number	(in Reaxys)	
Solubility (MCS) exists		Chemical Name	(in multiple)	
Solubility, g·I ⁻¹ (SLB.SLB)		Molecular Formula	(in multiple)	
Saturation (SLB.SAT)	Add >>	Number of Components	(in Reaxys)	
Temperature (Solubility (MCS)), °C (SLB.T) Solvent (Solubility (MCS)) (SLB.SOL)	Remove	Molecular Weight	(in multiple)	Ξ
Ratio of Solvents (SLB.RAT)	Remove all	LogP	(in Reaxys)	
Solubility Product (MCS) exists	Remove all	Melting Point	(in Reaxys)	
Solubility Product (SLBP.SLBP)	Add Defaults	Boiling Point	(in Reaxys)	
Temperature (Solubility Product (MCS)), °C (SLBP-T)		Density	(in Reaxys)	
Solvent (Solubility Product (MCS)) (SLBP.SOL)		Colour & Other Properties	(in Reaxys)	_
Ratio of Solvents (SLBP.RAT)		Mass Spectrometry	(in Reaxys)	
ailable to add Already selected Searches in multiple databa		Description (Mass Sportsomet	Nin Roman)	Ŧ

SEARCH REACTIONS

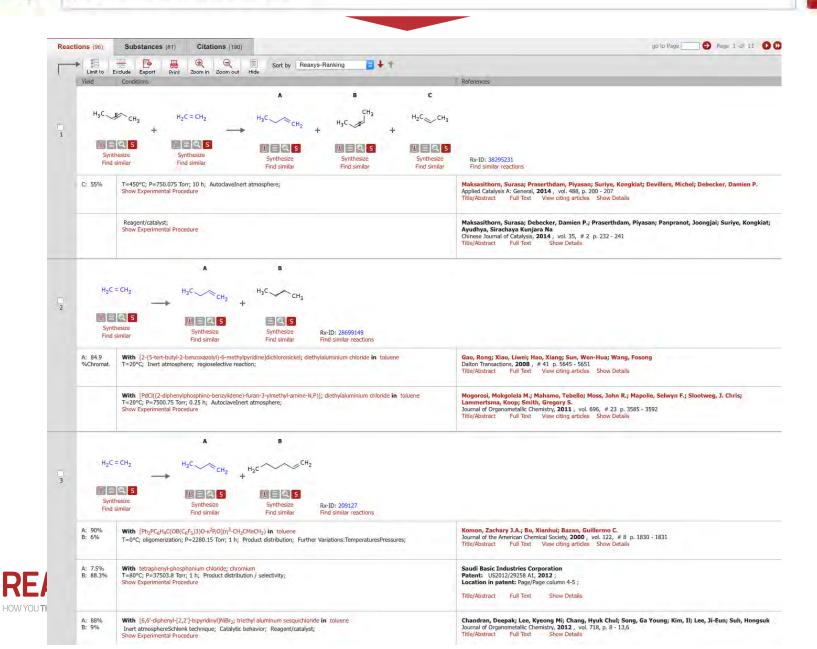
SEARCH BY STRUCTURE, DATA, OR TYPE

STRUCTURE DATA TYPE Structure Reaction Data is Reaction Data As drawn starts with Yield (numerical) -\$ Lookup X ends with Substructure Reaction Type 🗸 contains SONOGASHIRA on heteroatoms is 4 Solvent Lookup X · on all atoms Reaxys is \$ Reagent/Catalyst Lookup X Similarity Search for: SONOGASHIRA -Time (h) 4 Lookup X sonogashira (13) sonogashira coupling (1) -\$ Lookup X Temperature (°C) sonogashira cross-coupling reaction (5) sonogashira reaction (1) -\$ Lookup X Pressure (Torr) sonogashira -hagihara coupling (5) sonogashira alkylation (1) is 1.0 EDIT OLEAR Reaction Type Lookup X sonogashira alkynylation (49) sonogashira and castro reaction (1) is \$ Reaction Basic Index Lookup X sonogashira carbonylation (1) Create Structure Template from Name sonogashira condensation (4) sonogashira conditions (1) Please select role 🔹 Product Starting material Reagent / Catalyst Any role sonogashira contions (1) sonogashira couplig reaction (6) sonogashira coupling (18540) sonogashira coupling - wittig reaction (3) Atom mapping sonogashira coupling reaction (1152) sonogashira coupling-benzannulation reaction (13) sonogashira coupling-cyclization (29) Bond forming/breaking sonogashira coupling-isomerization reaction (28) sonogashira coupling-michael addition-cyclocondensation-sulfur extrusion Search reactions by type or Search reactions by structure Search reactions by reaction conditions name 111 111 111


Lookup X

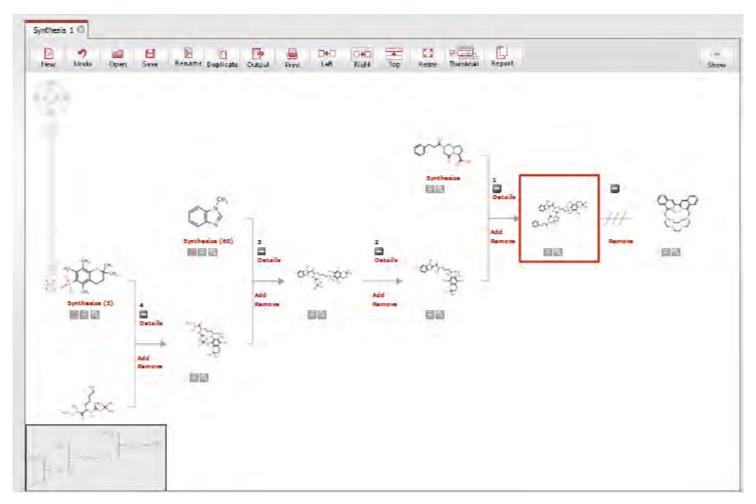
Transfer

Reset

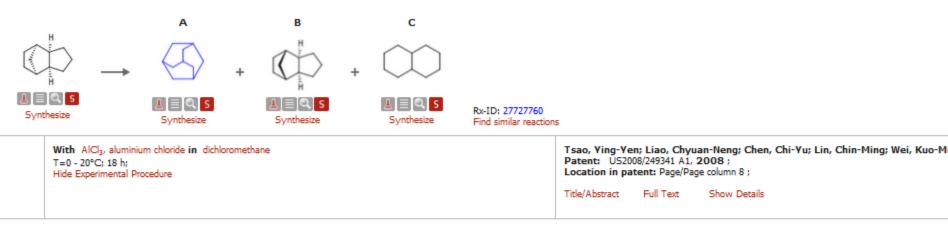

SEARCH LITERATURE

OUR GOAL: MAKE CONTENT MORE DISCOVERABLE, MORE EASILY!

Ask Reaxys


MAKE A COMPOUND

REAX	YS	0			
Query Results	Synth	iesis Plans	History	Report My Alerts My Settings Help	Register Login •
		29 reactions			
Create Alert		29 reactions	out of 3 su	ostances and 31 citations	
lter by:		Reactions	Substa	ices (Grid) Substances (Table) Citations	go to Page 🔵 🔊 Page 1 of 4 D
Sub-structure	φ				Bestine I A
Yield	¥		Limit to E:	clude Output Print Zoom in Zoom out Hide Sort by Reaxys	s-Ranking 🗸 🗘 🗘
Record Type	¥	Ŷ	ield	Conditions	References
Reagent/Catalyst	¥		6 H	0 00	
Solvent	Ŧ			O-H Y OND	
Reaction Type	¥		Cl ₂ I	$+00 \rightarrow 08$	
No. of Steps	¥	1		and the second	
Product Availability	¥		Synth		Rx-ID: 26351130 Find similar reactions
Reactant Availability	Ŧ				
Availability in other DBs	¥	8	4%	in water; acetic acid washing with acetic acid, drying in vac. over concd. H2SO4 or KOH;	Venanzi, L. M. Journal of the Chemical Society, 1958 , p. 719 - 724 Full Text View citing articles Show Details
Molecular Weight	¥				Gmelin Handbook: Ni: MVol.C2, 8.18.1, page 1041 - 1052 Full Text Show Details
Number of Fragments	¥	-			
Physical Data	Ŧ	4	1%	in water; acetic acid T=100°C; 0.666667 h;	Gaillard, Sylvain; Mabaye, Mbaye D.; Mboyi, Cleve D.; Pannetier, Nicolas; Renaud, Jean-Luc; Gaillard, Sylvain;
Spectroscopic Data	¥			Show Experimental Procedure	Mabaye, Mbaye D.; Mboyi, Cleve D.; Pannetier, Nicolas;


SYNTHESIS PLAN:

AUTOMATES THE UNDERLYING PROCESSES IN CREATING SYNTHESIS ROUTES

SHOW EXPERIMENTAL PROCEDURE

5:

EXAMPLE 5 is the comparative example of EXAMPLE 4.65 g of endo-THDCPD crystals from the same source of EXAMPLE 4 are placed in a 250 ml of glass bottle, followed by adding 40 g of dichloromethane thereto to dissolve the nitrogen and stirring in the ice bath. Subsequently, 10 g of AlCl₃ is added to the dichloromethane solution of endo-THDCPD, followed by stirring for 2 hours in the ice bath, and continuously stirring for 16 hours at room temperature. The above saturated KCl solution is washed with 100 ml of saturated KCl solution is washed with 100 ml of deionized water, followed by adding it to a separatory funnel, shaking to allow to separate into two layers and leaving the upper layer in the separatory funnel. The above saturated KCl solution washing proceed water, followed by adding it to a separatory funnel, shaking to allow to separate into two layers and leaving the lower layer in the deionized water, followed by adding it to a separatory funnel, shaking to allow to separate into two layers and leaving the lower layer in the deionized water washing procedure is repeated for three times. Subsequently, the lower layer is distilled to remove dichloromethane and water. The bottoms is collected, and determined by chemical analysis. The chemical analysis composed of 85.7 wt percent of exo-THDCPD, 0.5 wt percent of endo-THDCPD, 1.2 wt percent of Decalin, 5.8 wt percent of adamantane, 1.3 wt percent of exo-THDCPD, on the other two-stage hydrotreated saturated C₂ and/or MCPD diners. The bottoms has a volumetric heating value of 39.17 MJ/L, a density of 0.9339 at 15° C, and a viscosity of 3.52 cSt at 20° C. In this example, the isomerization reaction reaction reaction of this example is not suitable for preparing the high energy fuel because the freezing point of the isomerization reaction of this example is not suitable for preparing the high energy fuels because the freezing point of the isomerization reaction of this example is not suitable for preparing the high energy fuels because the freezing point of th

Physical Data

- ¥ Melting Point (8)
- ¥ Density (33)
- ¥ Adsorption (MCS) (994)
- ¥ Conformation (1)
- ¥ Crystal Phase (24)
- F Crystal Property Description (30)
- ¥ Crystal System (5)
- **F** Decomposition (1)
- **¥** Dielectric Constant (20)
- F Dissociation Energy (1)
- F Dynamic Viscosity (3)
- ¥ Electrical Data (56)
- **Felectrical Moment (1)**
- **¥** Electrochemical Behaviour (1)
- Flectrochemical Characteristics (17)
- ¥ Electrochemistry Data (54)
- ¥ Electron Binding (2)
- Figure Formation (3)
- **¥** Enthalpy of Vaporization (1)
- **¥** Further Information (1742)
- ¥ Heat Capacity Cp (90)
- **¥** Interatomic Distances and Angles (3)
- ∓ Ionization Potential (2)
- ¥ Liquid/Liquid Systems (MCS) (5)
- ¥ Magnetic Data (7)
- ¥ Magnetic Susceptibility (9)
- F Mechanical Properties (15)
- **¥** Molecular Deformation (1)
- ¥ Optics (3)
- **¥** Other Thermochemical Data (10)
- ¥ Solubility (MCS) (12)
- ¥ Space Group (78)
- Thermal Expansion (3)
- Transition Point(s) of Crystalline Modification(s) (129)
- **Transport Data (9)**
- Transport Phenomena (MCS) (15)

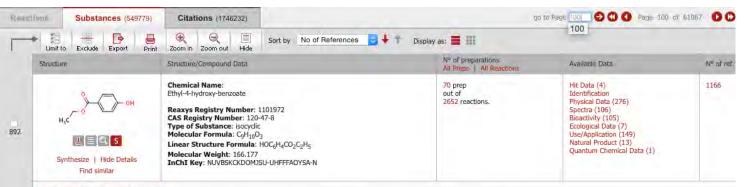
+	S	n	P	C	tı	۲	a
-	-	P	-	-			-

- **¥** NMR Spectroscopy (2)
- ¥ IR Spectroscopy (259)
- ¥ Mass Spectrometry (1)
- **¥ UV/VIS Spectroscopy (304)**
- ¥ ESR Spectroscopy (30)
- - ¥ Raman Spectroscopy (6)
 - ¥ Luminescence Spectroscopy (8)

Structure

0₂Ti

Synthesize | Hide Details


- Fluorescence Spectroscopy (6)
- The Spectroscopic Methods (5)
- Pharm photoc photoc Pharm increasi system inhibiti enpos second

TI02 - PROPERTIES

Structure/Compound Data			N° of preparations All Preps All React	ions Av	vailable Data		Target	N° of ret
Chemical Name: Titanium(IV) oxide Reaxys Registry Number: 436054 Type of Substance: Glass or Cerami compoundIsotope or isotope containing Molecular Formula: O ₂ Ti Linear Structure Formula: O ₂ Ti Molecular Weight: 79.8788 InChI Key: QWWIMOOFEDJKFN-UHF	c materialCoordination g compoundSolid solutior	1	542 prep out of 14302 reactions.	Bit Id Ph Sp Us Qu	uglikeness sactivity entification vysical Data (3437) vectra (621) se/Application (1555 santum Chemical ata (61))	Show Targets	11082
			★ Quantum Chemical	l Calculations	(61)			
★ Use (1555)			Properties	Method		Locat	ion Refe	erence
Coating/paints/lacquers	Location Page/Page column 5	Reference ROHM AND HA Raymond; Man Patent: US2014	Atom distances, angles	DFT - densit	y functional methods	suppor	ation Journ	reev, Yuri G.; Panchmat al of the American Chemica Abstract Full Text Vi
pigment in biocide coatings formulations containing hindered alkylamine polymers	Page/Page column 5	Title/Abstract ROHM AND HA Raymond; Man Patent: US2014)	Density of states	Ab initio calc DIM, SAMC	ns. (LCAO, GO SCF, , X-à, Hartree-Fock)		Fen	g, Ningdong; Wang, Qian g al of the American Chemica Abstract Full Text Vi
		Title/Abstract	Atom distances, angles Potential energy function, potential curve	Ab initio calc DIM, SAMC	ns. (LCAO, GO SCF,), X-alpha, Hartree-Fock)		Journ	ang, Jia; Li, Zhen Hua; F al of Physical Chemistry A, Abstract Full Text Vi
Cosmetics/dental/toilet	Page/Page column 33	UNIVERSITY O Patent: WO2014 Title/Abstract	Vibrational constants Molecular orbitals	Ab initio calc	ns. (LCAO, GO SCF,		El-S	hafei, Ahmed; Hussain,
Polymers/polymer applications	Page/Page column 33	UNIVERSITY O Patent: WO2014	Electronic energy levels Electronic energy levels		n, X-à, Hartree-Fock)		Title	al of Materials Chemistry, 2 Abstract Full Text Vi Kiaoqing; Wei, Shuxian;
antibacterial component of resins useful in dental composites	Page/Page column 33	Title/Abstract UNIVERSITY O Patent: WO2014	Electronic energy levels		, X-alpha, Hartree-Fock)		Journ	Alaoqing; wei, Shuxian; al of Organometallic Chemis Abstract Full Text Vi
		Title/Abstract	Density of states Band structure	Ab initio calc DIM, SAMC	ns, (LCAO, GO SCF, , X-alpha, Hartree-Fock)		Phys	nix, S.; Schmeits, M. ical Review B: Condensed N Text View citing articles car; Ghosh; Maiti; Chatto
Pharmaceuticals	Paragraph 34	SHOWA DENKC Masahiro; LI D Patent: WO2013 Title/Abstract	Band structure	All table colo	ns. (LCAO, GO SCF,		Phys Title	ica B: Condensed Matter, 2 Abstract Full Text Vi
photocatalytic material in antimicrobial composition	Paragraph 34	SHOWA DENKC Masahiro; LI D Patent: WO2013	Density of states UV/VIS wave lengths	DIM, SAMC), X-alpha, Hartree-Fock)		Phys Title	: Zhang: Liang ica B: Condensed Matter, 2 Abstract Full Text Vi
		Title/Abstract	Density of states Molecular orbitals Electronic energy levels Band structure	Ab initio calc DIM, SAMC	ns, (LCAO, GO SCF,), X-alpha, Hartree-Fock)		Appl	o, Dongqiu; Huang, Xiao ied Physics Letters, 2011 , Abstract Full Text Vi
photocatalytic material in antiviral composition	Paragraph 34	SHOWA DENKC Masahiro; LI D Patent: WO2013 Title/Abstract	Population analysis, charge distribution Density of states Band structure	Ab initio calc DIM, SAMC	ns. (LCAO, GO SCF,), X-alpha, Hartree-Fock)		Journ	Weimei; Chen, Qifeng;) al of Solid State Chemistry, Abstract Full Text Vi
Pharmaceuticals	Page/Page column 5; 6	OLD DOMINIO Patent: US2013/ Title/Abstract	Band structure Effective masses Population analysis,	Ab initio calc DIM, SAMC	ns. (LCAO, GO SCF,), X-alpha, Hartree-Fock)		Zhai Jouri Title	ng, Rui-Shuo; Liu, Yong; al of Alloys and Compounds Abstract Full Text Vi
increasing absorbency of the first material in a wound care system upon exposure to light	Page/Page column 5; 6	OLD DOMINIO Patent: US2013/ Title/Abstract	charge distribution UV/VIS wave lengths Density of states	Ab initio colo	ns. (LCAO, GO SCF,		71	ng, Zhi-Kun; Bai, Mei-Lir
inhibiting growth of bacteria in a wound care system upon enposure to light	Page/Page column 5; 6	OLD DOMINIO Patent: US2013/	UV/VIS wave lengths	DIM, SAMO	, X-alpha, Hartree-Fock)		Cher	nical Communications, 201 Abstract Full Text Vi
second material in a wound care system	Page/Page column 5: 6	Title/Abstract	Atomization energy	Ab initio calc DIM, SAMC	ns. (LCAO, GO SCF,), X-alpha, Hartree-Fock)		Jour Title	zato, Yoshifumi; Yukaw al of Alloys and Compounds Abstract Full Text Vi
secona material in a wound care system	PagerPage column 5; 6	OLD DOMINIO Patent: US2013/ Title/Abstract					Jour Title Hira	t, Richard H.; Beran, Gr al of Physical Chemistry A, Abstract Full Text Vi Ite; Morinaga; Yukawa;
Coating/paints/lacquers	Page/Page column 22	AT PROMOTIC					Jour Title	al of Alloys and Compounds Abstract Full Text Vi

Show AND Buttons	Solvent (Solubility (MCS))	is +		×	
Add to Query:	Structure	Molecular Formula	Alloy	Add/Remove Fields	Search Substances

Chemical Names and Synonyms

Ethyl-4-hydroxy-benzoate, ethyl 4-hydroxy-benzoate, para-hydroxybenzoic acid ethyl ester, 4-hydrodxybenzoic acid ethylester, 4-hydroxybenzoic acid ethyl ester, 4-hydroxybenzoic ethyl ester, ethyl para-hydroxybenzoate

± Hit Data

Chromatographic Data (4 Hits out of 4 view all)

Chromatographic data	Location	Reference
GC (Gas chromatography)		Zhang, Yi; Ni, Yan-Peng; He, Ming-Xin; Wang, Xiu-Li; Chen, Li; Wang, Yu-Zhong Polymer (United Kingdom), 2015, vol. 60, p. 50 - 61 Title/Abstract Full Text View citing articles Show Details
HPLC (High performance liquid chromatography)		Lee, Seung-Youl; Son, Eunjung; Kang, Jin-Young; Lee, Hee-Seok; Shin, Min-Ki; Nam, Hye-Seon; Kim, Sang-Yub; Jang, Young-Mi; Rhee, Gyu-Seek Bulletin of the Korean Chemical Society, 2013, vol. 34, # 4 p. 1131 - 1136 Title/Abstract Full Text View Citing articles Show Details Zabrzewska, Beata; Chyla, Anna: Bogdan, Anna Acta Poloniae Pharmaceutica - Drug Research, 2014, vol. 71, # 4 p. 563 - 573 Title/Abstract Full Text View Citing articles Show Details
UPLC (Ultra performance liquid chromatography)		Zhang, Jun-Xian; Miao, Ming-Ming; Niu, Xue-Mei; Li, Jin-Zhu; Han, Yi; Zhang, Ke-Qin; Zhang, Cheng-Ming Asian Journal of Chemistry, 2014, vol. 26, # 16 p. 5082 - 5086 Title/Abstract Full Text View Citing articles Show Details
TLC (Thin layer chromatography)	supporting information	Carta, Fabrizio; Vullo, Daniela; Maresca, Alfonso; Scozzafava, Andrea; Supuran, Claudiu T. Bioorganic and Medicinal Chemistry, 2013, vol. 21, # 6 p. 1564 - 1569 Title/Abstract Full Text View citing articles Show Details

FIND: A polymer shape

Comb polymer

The various shapes of polymer backbones may easily be searched by words: Citation Basic Index Is + comb polyacryl* Lookup × Search Literature

Title/Abstract

Inhibition of bacterial adhesion on well ordered comb-like polymer surfaces

The surfaces of comb-like poly(oxyethylene) derivatives with n-alkylsulfonyl side groups were more effective at reducing Pseudomonas aeruginosa adhesion than the surfaces of common materials such as polystyrene, poly(methyl methacrylate), poly(dimethylsiloxane), fluorinated polyacrylate, and glass. When the comb-like poly(oxyethylene) was mixed with polystyrene and poly(methyl methacrylate), the topology and roughness of the surfaces varied according to the mixture compositions. However the surface energies of the mixtures were close to that of the comb-like poly(oxyethylene) in the range of 21-23. mN/m and bacterial adhesion resistances of the mixture surfaces were also comparable to that of the pure comb-like poly(oxyethylene) surface.

Keywords:

Author: Bacterial adhesion; Blend; Comb-like polymer; Surface energy

Compendex Free Language: Bacterial adhesion; Comb-like; Comblike polymers; Common materials; Fluorinated polyacrylate; Mixture compositions; Poly(oxyethylene); Pseudomonas aeruginosa; Surface energies

Compendex Descriptor: Adhesion; Bacteriology; Esters; Interfacial energy; Mixtures; Polyacrylates; Polyethylene glycols; Polymers; Polystyrenes; Surface chemistry; Surface tension Compendex Mainhead: Surfaces

EMTREE drug term: dimeticone; glass; poly(methyl methacrylate); poly(oxyethylene); polyacrylic acid; polymer; polystyrene; unclassified drug

EMTREE medical term: article; bacterium adherence; chemical composition; controlled study; energy; nonhuman; priority journal; Pseudomonas aeruginosa; surface property Medline descriptor: Apoptosis; Bacterial Adhesion; Hydrocarbons; Microscopy, Atomic Force; Models, Biological; Molecular Weight; Polyethylene Glycols; Polymers; Polystyrenes; Pseudomonas aeruginosa; Silicon; Surface Properties; Water

Species Index: Bacteria (microorganisms); Pseudomonas aeruginosa

Reaxys Terms: poly(dimethylsiloxane); poly(methyl methacrylate); poly(oxyethylene); polyacrylate - roughness

FIND: Property of a Polymer

EXAMPLE: Mechanical Properties of Polytetrafluoroethylene

General Mechanical Properties, or specific Mechanical Properties (such as Young's modulus) may easily be found through searches in the CITATION BASIC INDEX QUERYLET. Simply type in the entry field, take note of the auto-suggest terms (and perhaps use them as a guide to application of truncation)

Citation Basic Index	is	# mech* prop* polytetrafluor	Lookup X	
		polytetrafiluor polytetrafiluoraethylen polytetrafiluoraethylendispersionen polytetrafiluoraethylene polytetrafiluoraethylene (pt/e) polytetrafiluoraethylene		Citation Basic Index

± Title/Abstract

Mechanical and electrical properties of laminated polytetrafluoroethylene films

Laminated polytetrafluoroethylene (PTFE) films, which are made of compact and porous PTFE layers, are prepared through the process of sintering. The corona charging technique is utilized to make the laminated PTFE films piezoelectric, thus transforming them into piezoelectrets. The crystallinity, Young's modulus in compression mode, stress-strain behavior, charge dynamics, and thermal stability of the fabricated films are investigated by particular techniques, such as differential scanning calorimetry (DSC), dielectric resonance spectra, dynamic mechanical analysis (DMA), thermally stimulated discharge (TSD) spectra, and isothermal annealing, respectively. The results reveal that the crystallinity of the fabricated PTFE films with three and five-layer systems are 79.5 and 59.8 percent, respectively. The compressive and tensile moduli at room temperature are 7.4 and 167 MPa for the three-layer system samples. The resulting temperature peak increases by 20 C as the heating rate increases from 2 to 4 C in TSD measurement. Two charge drift mechanisms exist in the films when the samples are thermally stimulated and discharged. With the increase of corona charging voltage from -10 to -25 kV, more and more detrapped charges from the deeper traps in the laminated PTFE films are released, corresponding to the current peaks identified in the temperature range from 130 to 140 °C, which prefer to drift through the solid PTFE layers. However, charges also escaped from the relevant shallow traps, corresponding to the current peaks identified in the temperature that range from 80 to 95 °C. The charge drift along the surface of the PTFE films are released of the corona charging voltage under the experimental-study conditions. The sample shows a stable piezoelectric d33 coefficient of 50 pC/N at 120 C after one day annealing at the same temperature.

Keywords:

Author: electric property; mechanical property; piezoelectret; Polytetrafluoroethylene; thermal stability

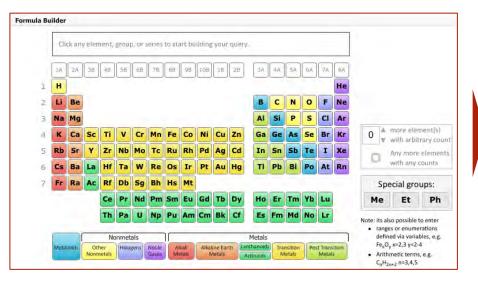
Compendex Free Language: Charge drift; Charge dynamics; Compression mode; Corona charging; Crystallinities; Current peak; Dielectric resonances; Dominant mechanism; Mechanical and electrical properties; piezoelectret; Polytetrafluoroethylene films; PTFE films; Rate increase; Room temperature; Shallow traps; Stress-strain behaviors; Temperature peaks; Temperature range; Tensile moduli; thermal stability; Three-layer systems; Young's Modulus

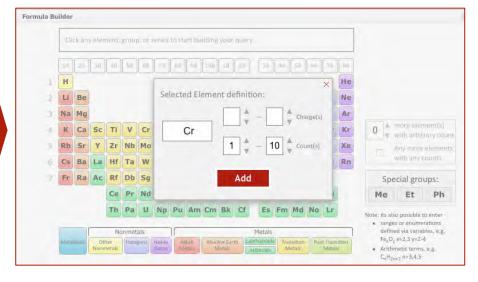
Compendex Descriptor: Differential scanning calorimetry; Dynamic analysis; Dynamic mechanical analysis; Dynamics; Elastic moduli; Electric discharges; Isothermal annealing; Laminating; Mechanical properties; Mechanisms; Piezoelectricity; Polytetrafluoroethylenes; Sintering; Stresses; Thermodynamic stability

Compendex Mainhead: Electric properties

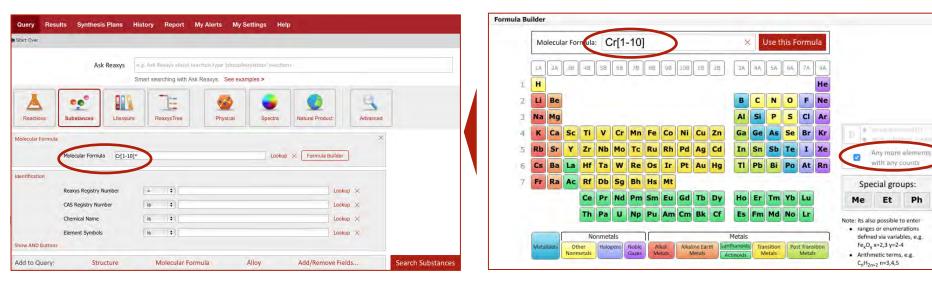
Reaxys Terms: PTFE; polytetrafluoroethylene - ambient reaction temperature; crystallinity; dielectric constant; differential scanning calorimetry; electrical property; mechanical property; piezoelectricity; sintering

ANSWERS fully meet expectations

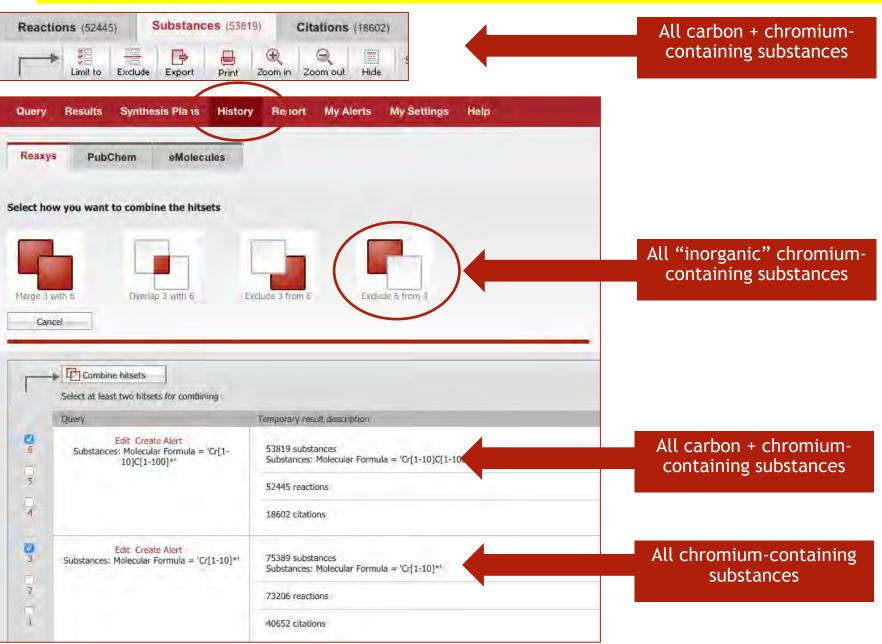

MOLECULAR FORMULA


MOLECULAR FORMULA BUILDER

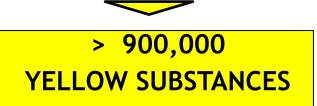
lassification of cat	lucio	8														Look	-					
Idssincapori of Cat	317.212			*												LOOM	чн //					
	Formula B	uilder																				
oiling Paint (°C)		M	olecul	ar Foi	rmula	. (act)	F[1	-20]				>	(Use tł	nis Fo	ormu	ıla			
Pressure (Tart)		1.4	24	ЗВ	4B	5B	6B	7B	SB	9B	108	1B	28	3A	4A	5A	6A	7A	8.4			
Solvent	1	H									n,			-			_	_	He			
Sectrochemical Ce	2	Li	Be											B	С	N	0	F	Ne			
	3	Na	Mg						_					AI	Si	Р	S	CI	Ar			
	4	к	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Кг	0	more ele with arbi	ment(s) trary count
escription	5	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe			e elements
Nucleus	6	Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn		with any	counts
escription	7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt			_	_	_	_	_	_		Sp	ecial gro	oups:
a service designed and					Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		Ме	Et	Ph
					Th	Pa	U	Np	Pu	Am	Ст	Bk	Cf	Es	Fm	Md	No	Lr		Note: its al	so possible	to enter
									-					Metals					_		es or enum	erations
Pressure (Tort)		6			N	lonme	tals		11				_	Metals					110		ed via varia	bles, e.g.
Pressure (Tarr)		Meta	lloids		N her netals		tals ogens	Noble		Alkali Metals		aline Ea Metals		nthanoids actinoids	Tra	nsition letals	PO	st Tran Meta		Fe _x O	ed via varia _γ x=2,3 γ=2 metic term	ibles, e.g. -4



Chrome compounds



CHROME COMPOUNDS


	Structure	Structure/C	ompound Data			Nº of preparations All Preps All Reactions	Available Data	Nº of ref
1	Cr Cr Synthesize Show Det Find similar	CAS Regis Molecular Linear Stru Molecular InChI Key	Vame: gistry Number: 35871 try Number: 7440-47- Formula: Cr ucture Formula: Cr Weight: 51.996 : VYZAMTAEIAYCRO-UH	3		241 prepout of 5933 reactions.	Identification Physical Data (2290) Spectra (28) Bioactivity (3) Use/Application (387) Quantum Chemical Data (172)	5685
2	Cr ₂ O ₃	Reaxys Re Type of Su compound Molecular Linear Stru Molecular	Name: Chromium oxide gistry Number: 11323 bstance: Glass or Cera Formula: Cr ₂ O ₃ ucture Formula: (Cr ₂ O Weight: 151.99 : OWYUGDPRPMNASD-U	mic materialIsotope	or isotope containing	739 prep out of 4138 reactions.	Identification Physical Data (799) Spectra (101) Bioactivity (2) Use/Application (51) Quantum Chemical Data (23)	3509
	0=			Find subs	tances that c	ontain Cr and C		177.5.1
Ē	Synthesize Sh	Reactions	Substances	Literature	ReaxysTree	Physical S	pectra Natural Proc	luct

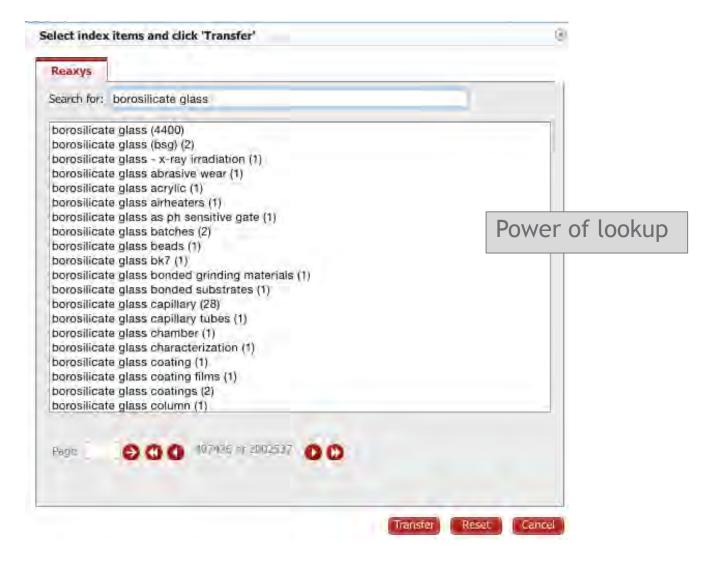
CHROME COMPOUNDS

CHROME COMPOUNDS (Yellow Inorganics)

Reactions	Substances		Physical	Spectra	Natural Product	Advanced
Molecular Formula	() () () () () () () () () ()					×
	Molecular Formula			Lookup	× Formula Builder	
Identification						
	Reaxys Registry Number	= +			Lookup	×
	CAS Registry Number	is ‡			Lookup	×
	Chemical Name	is 🛊			Lookup	×
	Element Symbols	ĭs ‡			Lookup	×
Show AND Buttons						
Physical Data						
	Colour & Other Properties	is \$ yellow			Lookup	×
Show AND Buttons						
Add to Query:	Structure	Molecular Formul	a A	lloy	Add/Remove Field	s

CHROME COMPOUNDS (Yellow Inorganics)

-	Results Synthesis Plans Histo	
Reaxy	s PubChem eMolecules	
lect ho	w you want to combine the hitsets	
-		
erge 9 v		Exclude 9 from 15 Exclude 15 from 9
Can	Cei	
_	Combine hitsets	
1	Select at least two hitsets for combining	
~	Query	Temporary result description
	Query Edit Create Alert Substances: Colour & Other Properties = 'yellow'	Temporary result description 909053 substances Substances: Colour & Other Properties = 'yellow'
14	Edit Create Alert Substances: Colour & Other Properties =	909053 substances
14	Edit Create Alert Substances: Colour & Other Properties =	909053 substances Substances: Colour & Other Properties = 'yellow'
14	Edit Create Alert Substances: Colour & Other Properties =	909053 substances Substances: Colour & Other Properties = 'yellow' 9935155 reactions 1793757 citations 7 substances
14 13 12	Edit Create Alert Substances: Colour & Other Properties =	909053 substances Substances: Colour & Other Properties = 'yellow' 9935155 reactions 1793757 citations
14 13 12	Edit Create Alert Substances: Colour & Other Properties =	909053 substances Substances: Colour & Other Properties = 'yellow' 9935155 reactions 1793757 citations 7 substances
14 13 12 11	Edit Create Alert Substances: Colour & Other Properties =	909053 substances Substances: Colour & Other Properties = 'yellow' 9935155 reactions 1793757 citations 7 substances filtered by Molecular Weight
14	Edit Create Alert Substances: Colour & Other Properties =	909053 substances Substances: Colour & Other Properties = 'yellow' 9935155 reactions 1793757 citations 7 substances filtered by Molecular Weight 5 reactions
14 13 12 11	Edit Create Alert Substances: Colour & Other Properties =	909053 substances Substances: Colour & Other Properties = 'yellow' 9935155 reactions 1793757 citations 7 substances filtered by Molecular Weight 5 reactions 4 citations 21570 substances



CHROME COMPOUNDS (Yellow Inorganics)

L			itations (6884)			Page 🔄 😌 Page 1 of 2	28 00				
	🔶 🧮 📴 🤀 🔍 🔍 🗐 Sort by No of References 🧕 🖡 🕈 Display as: 🗮 🏢										
	Structure	Structure/Compour	id Data		N° of preparations All Press All Reactions	Available Data	N ^a of re				
1	CrO ₃	Type of Substand compound Molecular Formu Linear Structure Molecular Weigh	Number: 10773376 e: Glass or Ceramic n la: CrO ₃ Formula: CrO ₃	naterialIsotope or isotope containing OYSA-N	102 prep out of 1355 reactions.	Hit Data (1) Identification Physical Data (291) Spectra (33) Bioactivity (3) Use/Application (22) Quantum Chemical Data (8)	1968				
	Chemical Names and Synonyms chromium(VI) oxide, chromium(IV) trioxide, chromic anhydride, chromium trioxide, chromium oxide, CrO3, ruthenium(IV) oxide										
	2 Crystal Property										
	Colour & Other Prop yellow	perties	Comment water	Reference Oeholm, L. W. Suomen Kemistiseuran Tiedonanto	oja, 1940 , vol. 49, p. 9 - 13						
	¥ Physical Data ¥ Spectra ¥ Bioactivity										
2	¥ Use/Application ¥ Quantum Chemica 0	Chemical Name: potassium dichrom Reaxys Registry Type of Substand Molecular Formu	Number: 11322242 e: Coordination comp la: Cr ₂ O ₇ *2K		69 prep. out of 774 reactions.	Hit Data (3) Identification Physical Data (330) Spectra (73) Bioactivity (3) Use/Application (11)	1472				
2	♀ Quantum Chemics ♀ = 0	Chemical Name: potassium dichrom Reaxys Registry Type of Substan- Molecular Formu Linear Structure Molecular Weigh InChI Key: IMNU	Number: 11322242 e: Coordination comp la: Cr ₂ O ₇ *2K Formula: 2K ^{(1+)*} Cr ₂	0 ₇ (2-)	out of	Identification Physical Data (330) Spectra (73) Bioactivity (3)	1472				
2	Quantum Chemics D = C = 0 C = 0	Chemical Name: potassium dichrom Reaxys Registry Type of Substam. Molecular Formu Linear Structure Molecular Weigh InChI Key: IMNU Synonyms K2GC207, PDC, potass	Number: 11322242 e: Coordination comp la: Cr ₂ O ₇ -2K Formula: 2K(1+)*Cr ₂ t: 294.184 AUFMVCNBHR-UHFFFA	O ₂ (2-) IOYSA-N ssium dichromate, bichromate potassium, pot	out of 774 reactions.	Identification Physical Data (330) Spectra (73) Bioactivity (3)	1472				
2	Quantum Chemical D = Cr = 0 2 Ke D = Cr = 0 2 Ke D = Cr = 0 C S Synthesize Hide Details Find similar Chemical Names and potassium dichromate, M ± Hit Data	Chemical Name: potassium dichrom Reaxys Registry Type of Substan Molecular Form Linear Structure Molecular Weigh InChI Key: IMNU Synonyms (20/207, PDC, potass Description (3 Hit	Number: 1132242 er: Coordination conditation fair (72,0°,2K) Formula: 2K(1+)*Gr ₂ t: 294.184 UUFMVCNBHR-UHFFF/ uum bichromate, Potas	O ₂ (2-) IOYSA-N ssium dichromate, bichromate potassium, pot	out of 774 reactions.	Identification Physical Data (330) Spectra (73) Bioactivity (3)	1472				

borosilicate glass

ALLOYS USING THE ALLOY QUERY FORM

INITIAL ALLOY SEARCH OPTIONS

Identification Alloy Comp Formula Show AND Buttons	osition	a er	lookg-1	ĸ				
Add to Query:	Structure	Molecular Formula	Alloy Add/Remove Fields	Search Substances				
Ask Reaxys	SET E	nter a keyword, conce	ept or author	Go				
		and a	Component Fo	ormula	Percentage			
			TI.		Number orr	ange: 20 or 20-40		
			AI					
			12. 					
		Percentage Typ		Type:	Additional Components:			
				Stocker	Structus Elizympound Data	Mr. of program. His Program (44) Department	Available Data	
				muture (composition completely given) - Literature alumnion senadium Show Detaus	Chemical Rams: Ti AAI-17 Reaxys Registry Number: 16552591 Type of Substance: muture (composition completely given)Alloy	0 prep aut al 1 rektoins	Physical Bata (55) Scientisti (1) Use/Application (1)	

mistare (composition completely given) :

1 Show Detains

titanium

aluminium

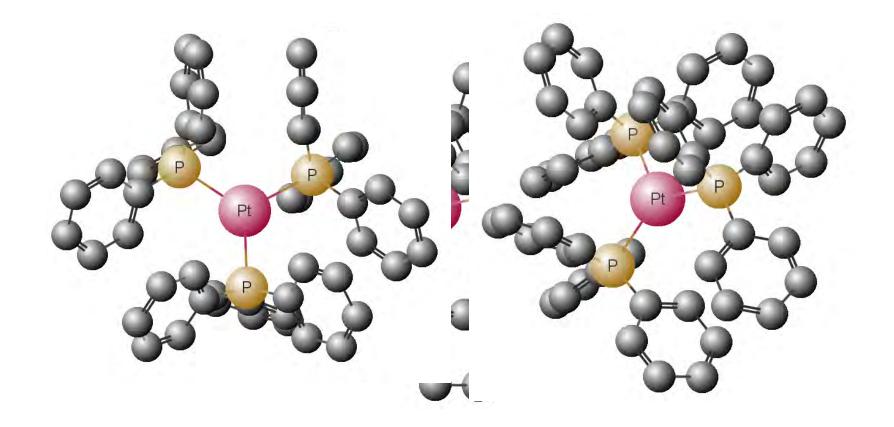
Physical Data (15)

Spectra (1)

Reaxys Registry Number: 16911805 Type of Substance: minture (composition completely given)Alloy

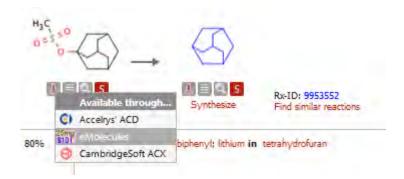
e Title/Abstract
A study of the potentials exclusive during inclusive in and the regactive in the offension and the fifther during consuming. To study this integratic buffer exclusions and booker sarrow
Title/Abstract
A study of the potentials exclusive during inclusive in exclusion and the regactive in the fifting consuming. To study this infection, gene cruit potential (cog) inclusivements before, during and after
Tallamin allow inclusion of the position of the position of the position of the position of the fifting consumer. The study this infection, gene cruit potential (cog) inclusivements before, during and after
tallawin allow inclusion of the position of the position of the position of the position of the study of the position of the study of the optimized one and the resolution of the position of the position of the position of the position of the study of th

Chemical Name: TA6V


Keywords: Anthor: Anador Anador New Califord e nantony Anganavasian new TMANY Taxanin Compensies Tree Language: Anador rosciale, Boles antany Califordic renduis. Interviewien unit: TMANY Compensies Descriptor, Ison Fusic, Colaty Canador Insustance, Causen densey, Electrochensity, Impletis (surpical), Givantisis, Rescion Anetica Compensies Antanaia Trainar alloy

0 prep out of

1 reations



ROTATE 3D VIEW

CHECK COMMERCIAL AVAILABILITY

SUPPORTS DIFFERENT STRUCTURE EDITORS

REAXYS°

odify application settings		
tructure editor	Editors that do not require a plugin to be installed: Dotmatics Elemental ChemAxon MarvinSketch (Note: requires Java to be installed) GGA Ketcher Reaxys uses Dotmatic's Elemental as default structure and reaction query editor, if no other editor is selected	The following editors can only be used, if the Reaxys Structure Editor PlugIn is installed: Crossfire Structure Editor Accelrys Draw Accelrys ISIS/Draw CambridgeSoft ChemDraw CambridgeSoft ChemDraw ICEdit Please check this with your administrator or click the hyperlink and download the installer. Reaxys will present a warning message, if these editors are selected, but the structure editor plugin is not installed.

Structure display options

O → H H → H → C → O O → H → H → C → O O → H → C → O O → All O → On Hetero O → Off O → Hetero and Terminal O → Off Display atom numbers O → Off O		 On Hetero On Hetero and Terminal Off Display atom numbers On 	Off Display Atom Valence On
---	--	--	-------------------------------------

38

3

REPORTING: GATHER AND PREPARE THE INFORMATION

REAXYS Anonymous user (199-305-18-70) Query Results Synthesis Plans History Report Hy Alarts Hy Settings Hale Live Chat Register Logis * 11 19 6# D 68 -100 1.14 Pyen. LAURE. -Open Shin Begroup Gend. # Argani Item: Synthesis Pipsi Tynthesis # Contract distribution of a contract of the state of modeline | Service | Arrobated # Report Darr: IDE-MRB: 67944 Dispersi 202-61-81 (2-92 | Houghail 1985-85-81 (2-92 Plan Submox Mulaight May Sour Sambar Anyonen à Departmention Descentration: **Heference** Linuition Oleman, Kerry Varon, Talkahimar, Samaka, Karanika 210.221 % sugars ing efferenties. Organic and Bioriolecular Chemotry, 2028, vol. 6, p. 2003 - 2006 Telefolational Full Test Trace orang entrols. Devis Details # Report Den 108-1088 67944 Contract (WARRING Mark) (WARRING MARK) Descriptions (1997) (1) hereing (1) hereinen A Dissociation Exponent **Unexclution** Expenses Diversidantion Flatinud Comments References Type Est() Enni 7.68 04 Hazaff, Malgoranta, Szymusiak, Henryk: Glazczywskie Swigier, Anna: Tyrakowskie, Bazenie Rietzenie. inscholte familie a Lapparett DE Twome H. C. H. Iternal of Appullutei and Pool Diametry, 2008, 105, 15, 41 p. 515-521 Title/Hartweit was find they articles Since Selain Kominsota, Hadori Sonda, Tamiyoshij Nagayama, Kinoyoj Tabata, Passaaki 0.88290 240880 OH-All present in the presence of salts Boscence, Biolechiology, and Bastrenstry, 2008, ya 65, #1 u, 126 120-Total Jost and Text Ren Dirth articles Show Service -L03938 OH: all apparent. Kumamoto, Midori; Sonda, Tamiyoshi; Kagayama, Kinuyo; Tabata, Hacaaki Bischerce, Biotectivology, and Bachersenty, 2001, vol. 61, will as c20 102. The/Asstract FullText view-ping-arbites three between

Contect (X.) Support | AlbumPressue | Terris and Conditions (Privacy Policy | Performance Page Copyright & 2013 Savet Ray on Properties 24. 48 replice mannet.

Rescue X and the Past of X theorem, are considered and antiputed in Pased Distant Properties 2A and used under better.

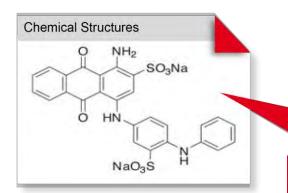
INTEROPERABILITY

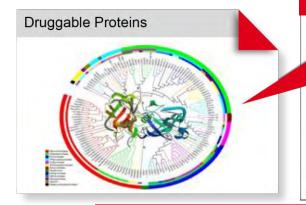
Stru	icture			×		
	By name search in Reaxys	-3 As drawn Substructure on factoriations on all atoms Similarity	 Include tautomers Ignore stereo No salts No mixtures No isotopes No charges No radicals No ring closures Align results with query 			
	Create Structure Template fro	"Magic number" carbon clusters: ionization potentials and selective reactivity	Zimmerman, Jeffrey A.; Eyler, John R.; Bach, Stephan B.H.; McElvany, Stephen W.	Journal of Chemical Full Text View cit	Physics, 1991 , vol. 94, # 5 p. 3556 ting articles	; - 3562
	Scopus		Scopus Sci\	/al Library catalogue Piot	r Golkiewicz → Logout Help →	Brought to you by Scopus Team
	Search A	Nerts My list				My Scopus
	"Magic number" carbon clusters: Ionization Zimmerman J.A., Eyler J.R., Bach S.B.H., M (1991) The Journal of Chemical Physics, 94 Is cited by: S Set feed	IcElvany S.W.				
	145 documents 📶 Analyze searc	ch results				Sort on: Date Cited
		🔿 🗣 🖶 Text export 🛩 📑 Download 📶 Vie	ew citation overview 9 View Cited by More			Show all al
	Refine Limit to Exclude	Fragment approach to constrained density function		Ratcliff, L.E., Genovese, L., Mohr, S., Deutsch, T.	2015 Journal of Chemical Physics	0
	Year 2015 (3) 2014 (4) 2013 (2) 2012 (1)	Full Text View at Publisher On the dynamics of photo-electrons in C <inf>60 2 Full Text View at Publisher</inf>	inf>	Gao, CZ., Wopperer, P., Dinh, P.M., Suraud, E., Reinhard, PG.	2015 Journal of Physics B: Atomic, Mo Optical Physics	lecular and 0
	Q 2011 (4)	 First-principles photoemission spectroscopy and compliant functionals 	orbital tomography in molecules from koopmans-	Nguyen, N.L., Borghi, G., Ferretti, A., Dabo, I., Marzari, N.	2015 Physical Review Letters	1
	Author Name Bohme, D.K. (9) Echt, O. (7) Petrie S. (6)	Full Text View at Publisher Laboratory formation of fullerenes from PAHS: Top 4	p-down interstellar chemistry	Zhen, J., Castellanos, P., Paardekoop D.M., Linnartz, H., Tielens, A.G.G.M.	er, 2014 Astrophysical Journal Letters	3


ocuse

REAXYS MEDICINAL CHEMISTRY

WHY IS IT SO DIFFICULT TO MAKE DRUGS?


Estimates of the number of possible drug molecules average 10⁴⁰. In contrast, the number of seconds since the Big Bang is only 10¹⁷.



If 10,000 chemists were to prepare 1 compound each per second, it would take 10,000,000,000,000,000,000,000,000,000 years to finish the job.

ESSENTIAL INFORMATION: 100+ EXPERIMENTAL FIELDS

5 Mint 12em 2000.32 1764-3795

High-Affinity, Non-Nacleothile-Derived Competitive Antagonists of Platelet P2Y a Receptors

'Young Basi," Kento Atter," Maryon Elior," Harboy Oland, 57 and Chron E. Miller

Planation from Provident and Internet Planation Chemistry & Planational distance (PDP), University of Rein, An de Interneties 4, 0.5020 Rose, General Planation of Represented on Chemistry Planating, Discontry of Postberg, Marringle 22, 0.55504 Techniq, Commen

Rowsen March Jp. 2004

1764

Autospinose kniv piyre related to the mediumally points, sounds in FIV a measure antigeness backets Mar. 166 have been synthesis and and optimized with respect to FIV, process at always. A stabilized biology and withing have himself have been related as a stable of FIV are respectively obtained by the HeIV are provided as a stability of the second stability of FIV are respectively and the stability of HeIV are provided as a stability of the second stability of the stability of the physical stability of the second stability. Taking a stability of the stability of the stability of the stability of the second stability of the stabili

Reaxys Medical Chemistry Excerption

Schuller, Hinsel priority reprint not T23 trapper selection (2017), seminally 0.473, and two VP. The combined selection, 1025, and T271, architecture of both resources and the combined. AE5, which indexes priorities (1000) and the combined action of high C27 mapping higher and transmission by AMP, P27, and P27 mapping higher and transmission by AMP, P27, and the discretion of the intervention of the AMP, P27, and the discretion of the intervention of the AMP, P27, and the discretion of the intervention of the AMP, P27, and the discretion of the anti-target and the discretion of the AMP, P27, and P27, and P27, and P27, and the discretion of the anti-target and the discretion of the anti-target and the discretion of the anti-target and anti-target and the anti-target and and discretion approximation of and antimized approximation are presented in the anti-target and antimized approximation are presented in the anti-target and antimized approximation and the antimized and and discretion of and antimized approximation are presented in the antimized approximation of the antimized approximation are presented in the antimized approximation and antimized approximation are presented in the antimized approximation and antimized approximation are presented in the antimized intervention and and a structure and the antimized approximation and antimized approximation and presented antimized to employing that discretions and, as a consequence, in a structure and the discretion and discretion and and a structure and the discretion and and discretion and discretion and and the anti-target anti-target temperature and the discretion and discretion and and the anti-target temperature and and discretion and discretion and the anti-target temperature and anti-target temperature and the discretion and anti-target temperature and the discretion and anti-target approximation and the discretion and and anti-target approximation and the discretion and the disc

HI HULLSONDON' CUT. SALTY @ 24th Assesses Classical Secury Distribution on National Secury

Integration (C_{12}), there is a set of A (A), respectively, the spectrum (A), C_{12} (spectrum) (A), C_{12} (spec

The metrics, it is highly describe to develop W(x) are appeared to the two backs (or is developed as the second of the origination W(x) are appeared to the developed and second the developed and the developed are recently been developed and appeared on the developed are recently been developed as appeared to the developed are developed as a second to appear the developed are developed as a second as a second and down the developed are indeveloped are set. Also,

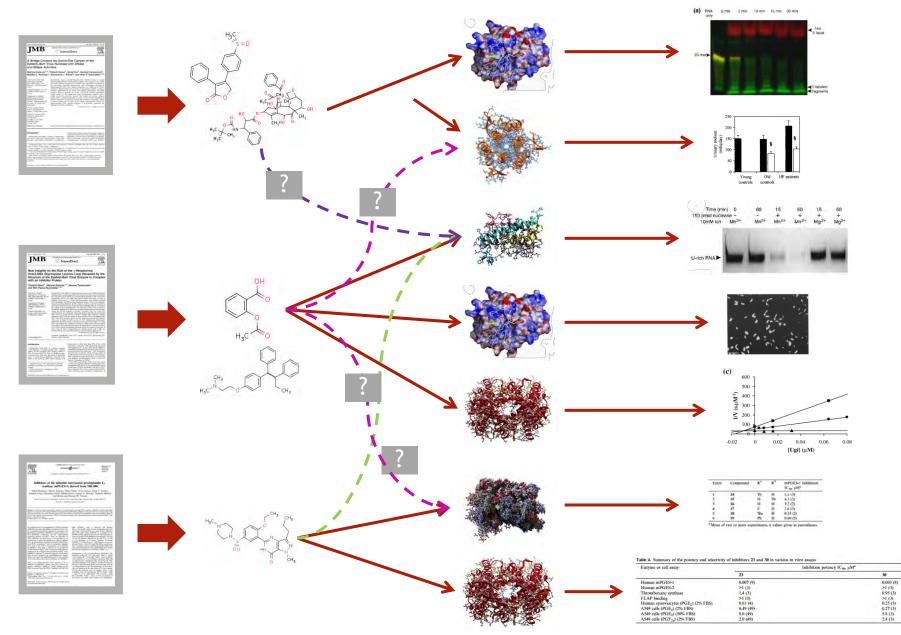
 is had paramy marking any data paramy distribution (b) how the halo (b) how the halo

5

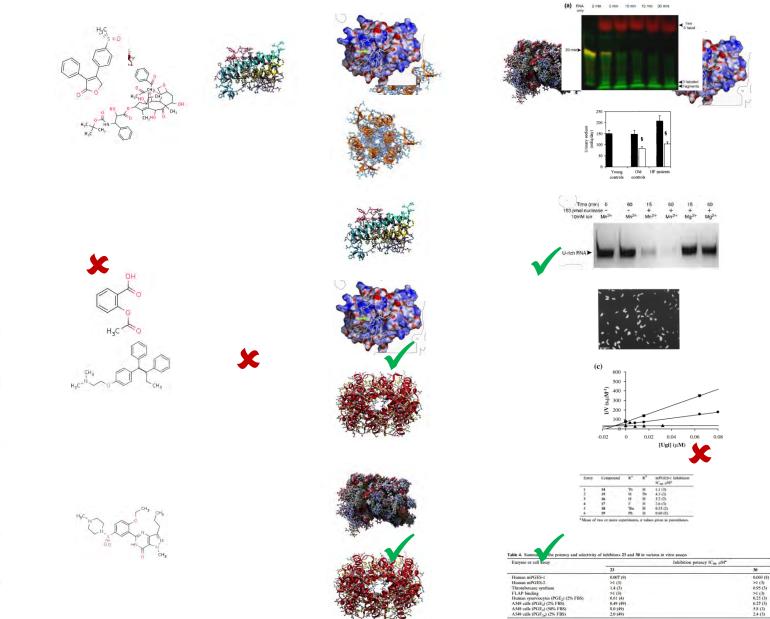
0413

Quantitative Results

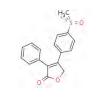
125

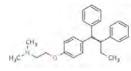

75

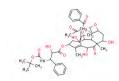
Bioassays: Cell lines, Species

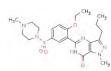


... BUT IT'S NOT THAT SIMPLE, MEDICINAL CHEMISTS FOR INSTANCE NEED TO COLLECT, ORGANIZE AND COMPARE INFORMATION FROM DIFFERENT SOURCES... THIS IS TIME CONSUMING AND ERROR PRONE




44


... BUT IT'S NOT THAT SIMPLE, MEDICINAL CHEMISTS FOR INSTANCE NEED TO COLLECT, ORGANIZE AND COMPARE INFORMATION FROM DIFFERENT SOURCES... THIS IS TIME CONSUMING AND ERROR PRONE



AND TO MAKE A DECISION ON WHICH EXPERIMENT TO DO, YOU WANT TO ORGANIZE YOUR CONTENT, NORMALIZE AND COMPARE, TO UNDERSTAND WHICH COMPOUND INTERACTS WITH WHICH TARGET AND TRIGGER WHICH BIOLOGICAL EFFECT—THAT'S A LOT OF MANUAL WORK!

RESULTS VIEW - HEATMAP

Manage X and Y axis

Filter by:	Bioactivitie	S (539)	T	ctions	(1010)	Subst	ances (3	92)	Targets (27)	Citations	(79)										
Substructure	DISPLAY:	0		-	Ā	M	SELE	ECTED	a :	9.1	FILTER:	7.7	6		15	0 Apply						-
Targets	DISPLAT	Structure	Navigat	or AxisVa	alues Dat	aDensity			Limit to Ex	lude	FILTER:	min	P	X Value:	ma			Exclude GC	STAR data			Legen
Target Species							-												-			
Substance action on target	X-axis: Targets		arsa.			a	3	1 receptor	4		E ase	4 350 4	5	2		4	1	4			2	ż
Cells Lines			ding cr			odtol (1,4,5)	redifie	an Tre	Juploon	receptor	offecto	odiesto	in da	meth me		2 recept	abdatin 21	datin r	~	so inte	ir acety	pape
Effect	Y-axis: Substances		ath thin	er talle	99455	kites	nward	melabonin	opicit re	p2yrea	phosph	photo	polasti	Dodasa	redd	C emps	otemos	otemos	mem27	proste	clinese	witage
Parameters			×		۲													۲				
Yield Record Type	- 02,- 0							10.5											Thum	nail Pane		×
Réagent/Catalyst Solvent	or'ob	-		_					_					-	_	-78			4			-
Reaction Type No. of Steps	o vir								_					æ)						_	- 1	-
Product Availability Reactant Availability	AND O	E							- 25					-					1	-		
Availability in other DBs Molecular Weight				_	10				Bio	acti	vity						Ľ					
Number of Fragments Physical Data		T			10				dat		ased	on										
Spectroscopic Data Ecological Data	or on Ha	E					91			vall				9.6								87
Natural Product Availability Availability in other DBs						75																
LogP H Bond Donor (HBD)	drove	T												ā.								

Heatmap Cell Details			Substance 1 of 1
7.9 X-axis	: Targets Y-axis: Substances	Select value type: MAX	1 substances and 1 bioactivities
Structure	Structure/Compound Data		
Hide De	Linear Structure Formula: C ₁₈ H ₁₉ N	10	•
	-		

Chemical Names and Synonyms

N-benzyl-4-azahexacyclo[5.4.1.02,6.0.05,9.08,11]dodecan-3-ol

Druglikeness

Lipinski rules componen	t
Molecular Weight	265.355
logP	2.434
HBA	2
HBD	1
Matching Lipinski Rules	4
Veber rules component	
Polar surface Area (PSA)	23.47
Rotatable bond count	2
Matching Veber rules	2

★ Bioactivity

In vitro: Efficacy (1)

Quantitative Results

F		Parameter	Value (qual)	Value (quant)	Unit	Action on Target	Target	_	Target Species	Tissue/Organ	Cell	Bioassay	Dose	Effect	Reference (ex	
Н		Кі	=	12	nM	Radioligand (/ligand)	Opioid Receptor, Sigma 2		Rat		PC12		= 100 µM	binding activity	Bioorganic and I Title/Abstract	
	. [-									

Ξ

E

48

EXAMPLE: SUBSTANCES ACTIVE ON COX-2

t index items and clic	k 'Transfer'	9			
xys					
r search term: cox-2		BRARCH			
Bioactivities	Target Name	is Cyclooxygenase 2'		Lookup X	
	Target PDB ID	is 💌		Lookup X	
	Substance Route of Adm.	is 💌		Lookup X	
	Substance Dosing Regimen	is 💌		Lookup X	
	Substance Action on Target	is 💌		Lookup X	
	Substance Effect	is 💌		Lookup X	
	Bioassay Category	is 💌		Lookup X	
	Biological Species	is 💌		Lookup X	
	Organs/Tissues	is 💌		Lookup X	
	Cells/Cell Lines	is 💌		Lookup X	
	Measurement pX	> 💌 8		Lookup X	
Show AND Buttons	•				
Add to Query:	Structure	Molecular Formula	Alloy	Add/Remove Fields	Search Bioactiv

EXAMPLE: SUBSTANCES ACTIVE ON COX-2

Bioactivities	6 (49962)	Reactions (85	5330) Sub s	tances (23831)	Targets (4	o) Citations	\$ (1747)			
DISPLAY:	Structure /	Vavigator AxisValues	DataDensity	SELECTED DATA:		Export FILTE	R: 0,0 0 min pX Value	ar max	Exclude GOSTAR data	Lege
X-axis) Targets Y-axis:							pdoxegrenae 2			
Substances									CAL	
14-							Cyclooxygenase 2, CU)X-2, COX2, Prostaglandin (G/H synthase 2	0
an							118			
ta?							112			
P										
050							11.2			
0							11.2			
tra							10.8			
	T									
agos							10.5			
mas										
agor							10.7			
45										
agor							12.7			
0										

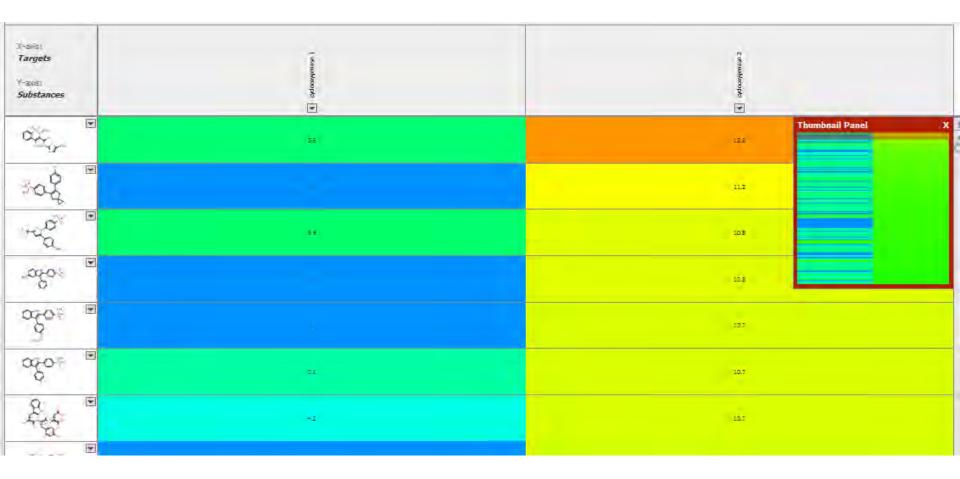
EXAMPLE: AND NOT ACTIVE ON COX-1

Bioactivities				
	Target Name	is vicyclooxygenase 1		Lookup X
	Target PDB ID	is 💌		Lookup X
	Substance Route of Adm.	is 💌		Lookup X
	Substance Dosing Regimen	is 💌		Lookup X
	Substance Action on Target	is 💌		Lookup X
	Substance Effect	is 💌		Lookup X
	Bioassay Category	is 💌		Lookup X
	Biological Species	is 💌		Lookup X
	Organs/Tissues	is 💌		Lookup X
	Cells/Cell Lines	is 💌		Lookup X
	Measurement pX	< 🗸 6		Lookup X
Show AND Buttons				
Add to Query:	Structure	Molecular Formula	Alloy	Add/Remove Fields



EXAMPLE: AND NOT ACTIVE ON COX-1

Bioactivities (16853	3) Reactions (38912) Substances (10506) Targets (13) Citations (1080)
DISPLAY: Structure	Navigator Axis Values DataDensity Data: unit to Enclose Export FILTER: 0.0 Value: 0120 Exclude GOSTAR data Lagend
X-axis; Targets Y-axis) Substances	t oppositues t
ger "	Thumbnail Panel X
\$\$	
her the second	
A Constant	


HOW YOU THINK HOW YOU WORK

EXAMPLE: AND NOT ACTIVE ON COX-1

EXAMPLE: SUBSTANCES ACTIVE SELECTIVELY ON COX-1 AND COX-2

ANTAGONIST WITH LOW ACTIVITY ON 5-HYDROXYTRYPTAMINE RECEPTOR

Bioactivities							
	Target Name	is 💌	5-hydroxytryptamine 2 rece	eptor [Human]'		Lookup X	
	Target PDB ID	is 💌				Lookup X	
	Substance Route of Adm.	is 💌				Lookup X	
	Substance Dosing Regimen	is 💌				Lookup X	
	Substance Action on Target	is 💌	antagonist			Lookup X	
	Substance Effect	is a	antagonist			Lookup X	
	Bioassay Category		blocker inactivator			Lookup X	
	Biological Species	·	inhibitor			Lookup X	
	Organs/Tissues		inverse agonist irreversible antagonist			Lookup X	
	Cells/Cell Lines		irreversible inhibitor modulator			Lookup X	
	Measurement pX		opener			Lookup X	
Show AND Buttons			partial agonist			LOOKUP X	
Show AND Buttons			radioligand (/ligand)				
Add to Query:	Structure	Molecul	radioligand/ligand stimulator		Add/Remo	e Fields	Search Bio
			stimulator/protector				
Clear Query			substrate				



ANTAGONIST WITH LOW ACTIVITY ON 5-HYDROXYTRYPTAMINE RECEPTOR

DISPLAY	Structure Navigator AxisValues DataDensity DATA: meto Excluse Export FILTER: 0.0 pX Value: max	Exclude GOSTAR data
X-axis: Targets Y-axis: Substances	- the second sec	
Å	5-hydroxytryptamine 2 receptor, 5-HT2, 5-HT2 receptor	ptor, Serotonin 2 receptor
00	84	
-south-		
20 00	9 +±	
and and and		
8 8 8 8		
000		
50		

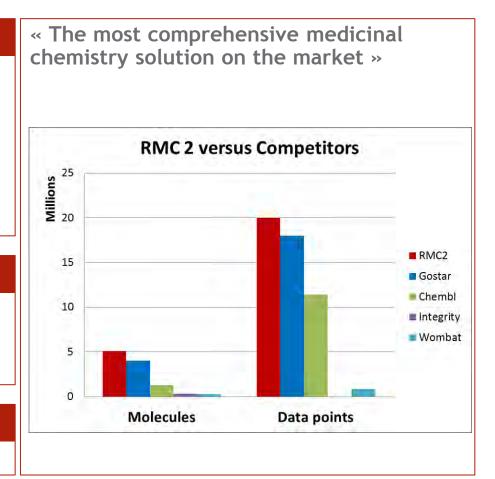
ANTAGONIST WITH LOW ACTIVITY ON 5-HYDROXYTRYPTAMINE RECEPTOR

RMC 2 CONTENT

Patents Origin and starting date

>90 000 Patents

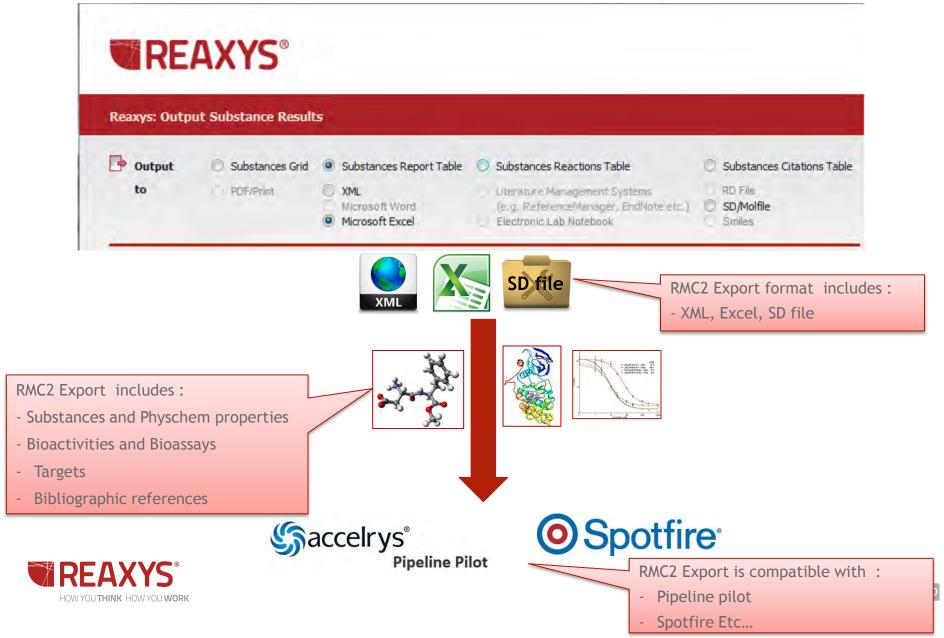
- US: 1971-present
- EP: 1979-present
- WO: 1978-present (English only)
- Patents are coming from the A61K class mainly but not only.

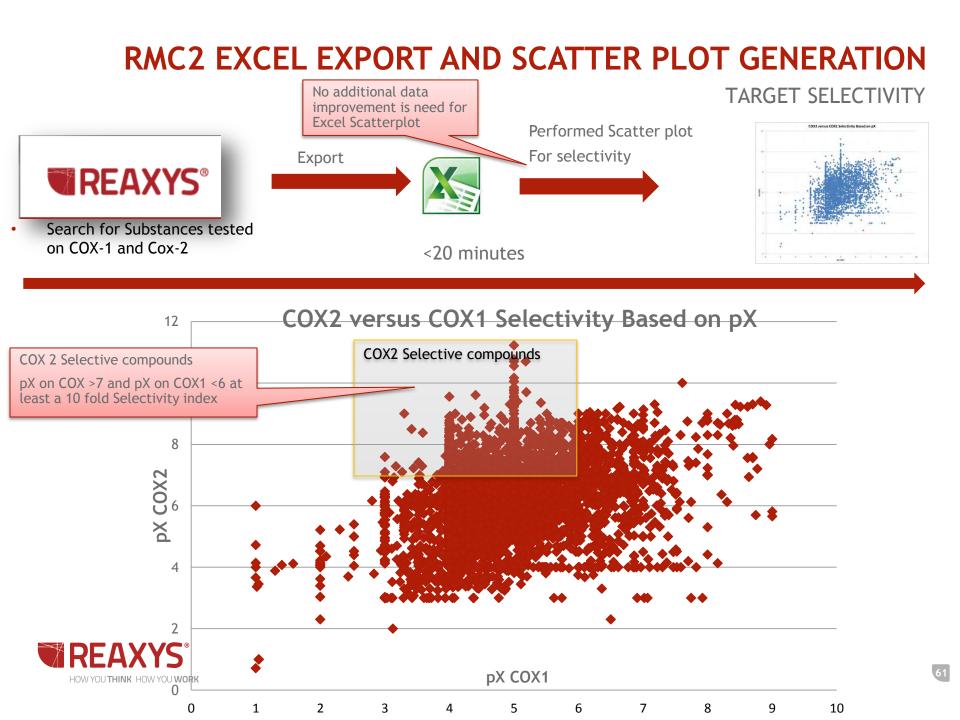

Articles and Journals

- >5000 Journals Covered
- >230 000 Articles
- From 1980 to Present

Drugable Targets

>9000 Drugable Targets





EXPORT CAPABILITIES

RMC2 EXPORT AND OUTPUT CAPABILITIES

and... what is your reaction?

PIOTR GOLKIEWICZ

LIFE SCIENCES SOLUTION CONSULTANT CENTRAL EASTERN EUROPE

> P.GOLKIEWICZ@ELSEVIER.COM MOBILE: +48 695 30 60 17

